By Oliver Oey, Karlsruhe Institute of Technologie (KIT)

By Oliver Oey, Karlsruhe Institute of Technologie (KIT)

The mapping process of high performance embedded applications to today’s multiprocessor system on chip devices suffers from a complex toolchain and programming process. The problem here is the expression of parallelism with a pure imperative programming language which is commonly C. This traditional approach limits the mapping, partitioning and the generation of optimized parallel code, and consequently the achievable performance and power consumption of applications from different domains. The Architecture oriented paraLlelization for high performance embedded Multicore systems using scilAb (ALMA) project aims to bridge these hurdles through the introduction and exploitation of a Scilab-based toolchain which enables the efficient mapping of applications on multiprocessor platforms from high level of abstraction. This holistic solution of the toolchain allows the complexity of both the application and the architecture to be hidden, which leads to a better acceptance, reduced development cost and shorter time-to-market. Driven by the technology restrictions in chip design, the end of Moore’s law and an unavoidable increasing request of computing performance, ALMA is a fundamental step forward in the necessary introduction of novel computing paradigms and methodologies.

Co-signed paper by Timo Stripf, Thomas Bruckschlögl, Oliver Oey, Michael Rückauer – Karlsruhe Institute of Technologie (KIT)

Keywords
Scilab to C, Multicore, Code generation, Parallelization

References
[1] T. Stripf, O. Oey, T. Bruckschloegl, J. Becker, G. Rauwerda, K. Sunesen, G. Goulas, P. Alefragis, N. S. Voros, S. Derrien, O. Sentieys, N. Kavvadias, G. Dimitroulakos, K. Masselos, D. Kritharidis, N. Mitas, and T. Perschke, “Compiling Scilab to high performance embedded multicore systems,” Microprocessors and Microsystems, Jul. 2013.
[2] G. Goulas, C. Valouxis, P. Alefragis, N. S. Voros, O. Oey, T. Stripf, T. Bruckschloegl, J. Becker, C. Gogos, A. El Moussawi, M. Naullet, and T. Yuki, “Coarse-Grain Optimization and Code Generation for Embedded Multicore Systems,” in 2013 Euromicro Conference on Digital System Design (DSD), 2013, pp. 379–386.
[3] T. Stripf, O. Oey, T. Bruckschloegl, R. Koenig, G. Goulas, P. Alefragis, N. S. Voros, J. Potman, K. Sunesen, S. Derrien, O. Sentieys, and J. Becker, “A Compilation- and Simulation-Oriented Architecture Description Language for Multicore Systems,” in 2012 IEEE 15th International Conference on Computational Science and Engineering (CSE), 2012, pp. 383 –390.
[4] J. Becker, T. Stripf, O. Oey, M. Huebner, S. Derrien, D. Menard, O. Sentieys, G. Rauwerda, K. Sunesen, N. Kavvadias, K. Masselos, G. Goulas, P. Alefragis, N. S. Voros, D. Kritharidis, N. Mitas, and D. Goehringer, “From Scilab to High Performance Embedded Multicore Systems: The ALMA Approach,” in 2012 15th Euromicro Conference on Digital System Design (DSD), 2012, pp. 114 –121.
[5] T. Stripf, O. Oey, T. Bruckschloegl, R. Koenig, M. Huebner, J. Becker, G. Goulas, P. Alefragis, N. S. Voros, G. Rauwerda, K. Sunesen, S. Derrien, D. Menard, O. Sentieys, N. Kavvadias, G. Dimitroulakos, K. Masselos, D. Goehringer, T. Perschke, D. Kritharidis, and N. Mitas, “A flexible approach for compiling scilab to reconfigurable multi-core embedded systems,” in 2012 7th International Workshop on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2012, pp. 1 –8.
[6] G. Goulas, P. Alefragis, N. S. Voros, C. Valouxis, C. Gogos, N. Kavvadias, G. Dimitroulakos, K. Masselos, D. Goehringer, S. Derrien, D. Menard, O. Sentieys, M. Huebner, T. Stripf, O. Oey, J. Becker, G. Rauwerda, K. Sunesen, D. Kritharidis, and N. Mitas, “From Scilab to multicore embedded systems: Algorithms and methodologies,” in 2012 International Conference on Embedded Computer Systems (SAMOS), 2012, pp. 268 –275.